
VCA Integration

v1.4.1r1

Chapter 1

Introduction

This is the API integration document for the VCAcore Video Analytics system.

The VCAcore Video Analytics system is available on a number of platforms:

• VCAbridge, an embedded hardware solution.

• VCAserver, an application and service for Windows and Linux.

The video processing features of the VCAcore API are identical across the various platforms. However,
the system-specific settings are different, and these differences are described in the following sections.

1

Chapter 2

REST API Introduction

2.1 Configuration Tree

The REST API of VCAcore is used by Core’s web UI to configure the web backend.

The VCAcore REST API allows the user to change its configuration tree, which is where the entire VCA-
core configuration is stored. The configuration tree can be accessed using the URL below:

http://SERVER_IP:PORT/api.json

2.2 Interacting with the Configuration

2.2.1 Adding Objects to the Configuration Tree

To add an object to the configuration, send a POST request to the appropriate endpoint for the type
of object you are adding.

For example, to add an element:

POST the element to /api/elements with the following payload:

{
"typename": "rtsp",
"location": "rtsp://192.168.1.1/stream",
"user_id": "admin",
"user_pw": "password",
"do_rtsp_keep_alive": "FALSE",
"protocols": "7",
"name": "MY_RTSP_STREAM_1"

}

Response:

{
"index": 2

}

2

The response is the index of the newly created object in the configuration tree, in this case the RTSP
element at /api/elements/2. This index can be used as a reference to update this object.

It is not necessary to include all the properties of an object in the JSON payload of the POST request.
Where a property is not specified, a default value will be used. For objects which have a typename
property, this property is required.

2.2.2 Modifying Properties in the Configuration Tree

Any property can be modified by sending the appropriate PUT request to the full path of the property,
with the desired value in the payload. For example, if you wanted to change the name property on the
element that was just created, you would send a PUT request to /api/elements/2/name with the
following payload:

"New Name"

It is also possible to update multiple properties in one request by sending a PUT request to the par-
ent object. In this example, you could send a PUT request to /api/elements/2 with the following
payload:

{
"user_id": "root",
"user_pw": "pass",
"name": "New Name"

}

These methods can be applied to any object in the api.json.

2.2.3 Getting Properties in the Configuration Tree

Any or all of the configuration tree can be retrieved from the REST API by sending a GET request to the
desired endpoint. For example, sending a ‘GET’ request to /api/elements/2/ would return:

{
"typename": "rtsp",
"location": "rtsp://192.168.1.1/stream",
"user_id": "root",
"user_pw": "pass",
"do_rtsp_keep_alive": "FALSE",
"protocols": "7",
"name": "New Name"

}

Additionally, the entire configuration can be returned by sending a GET request to /api.

2.2.4 Error Handling

When a request was successful, the VCAcore web server responds with a __2xx__ code.

3

Requests that add an object using POST will also have the index of the newly-created object in the
response, as shown below:

{
"index": 4

}

When a request has failed, the web server returns a __4xx__ or __5xx__ error code.

Additionally, the web server will return a descriptive error string that can be used to diagnose the
problem. The error is returned as an object with an error property, and the error string as its value:

{
"error": "An error has occured."

}

2.2.5 HTTP Request Headers

It is a requirement to add the Content-Type: application/json header to all REST API requests.

2.3 Custom Objects

2.3.1 Point Object

A point object represents a point in 2D space. An example point object is given below:

{
"x": 200,
"y": 400

}

The properties of a point object are as follows:

Property Type Description Possible values

x Unsigned
Integer

The x coordinate of this
point

Any unsigned integer between 0 and
65535 (inclusive)

y Unsigned
Integer

The y coordinate of this
point

Any unsigned integer between 0 and
65535 (inclusive)

2.3.2 Colour Object

A colour object represents an RGBA colour value An example colour object is given below:

{
"r": 100,
"g": 200,
"b": 140,

4

"a": 90
}

The properties of a colour object are as follows:

Property Type Description Possible values

r Unsigned
Integer

The red component of the
colour

Any unsigned integer between 0 and
255 (inclusive)

g Unsigned
Integer

The green component of
the colour

Any unsigned integer between 0 and
255 (inclusive)

b Unsigned
Integer

The blue component of
the colour

Any unsigned integer between 0 and
255 (inclusive)

a Unsigned
Integer

The alpha component of
the colour

Any unsigned integer between 0 and
255 (inclusive)

2.4 Licenses

2.4.1 Adding a License

To add a license, simply send a POST request to /api/licenses/vca. A sample payload is given
below:

Note: The license string provided below is invalid. Youwill need to purchase a license for your hardware
GUID.

{
"license": "43214321EDFAEFDEAFDEAFDEAFDEADFADAAEEADAFDEAFEDA"

}

Property Type Description Possible values

license String The license string Any valid license string

2.4.2 Retrieving the Hardware GUID

To retrieve the hardware GUID, you need to send a GET request to /api/hardware/guid.json The
GUID is returned as a string, as shown below:

"434E3D4AE43DAE34DEA43DEA43DE34ADE3A4DEA34DE4A3DE4"

5

Chapter 3

REST API Channels

3.1 Elements

There are two types of elements supported by VCAcore - file and RTSP elements. Elements are inputs
to channels, and must be added before a channel is created.

3.1.1 Adding an RTSP Element

An RTSP element may be created added by sending a POST request to /api/elements endpoint. A
sample RTSP element is shown below:

{
"typename": "rtsp",
"location": "",
"user_id": "",
"user_pw": "",
"do_rtsp_keep_alive": "FALSE",
"protocols": "7",
"name": ""

}

Property Type Description Possible values

location String The URI of this RSTP stream Any string, can be empty
user_id String The username to be used to authenticate with

the RTSP server
Any string, can be empty

user_pw String The password to be used to authenticate with
the RTSP server

Any string, can be empty

do_rtsp_keep_aliveString A boolean (represented as a string), specifying
whether keep-alive should be enabled in this
RTSP stream

"TRUE" or "FALSE"

protocols String The protocol to use for this RTSP stream Set to "4" for RTSP over
TCP, otherwise set to
"7"

6

Property Type Description Possible values

name String A user-specified name for this element Any string, can be empty

3.1.2 Adding a File Element

An RTSP element may be created by sending a POST request to the api/elements endpoint. A sam-
ple file element is shown below:

{
"typename": "file",
"name": "",
"location": "las-vegas.mp4"

}

Property Type Description
Possible
values

locationString The filename of the video (video files must be located in the
share/test-clips subfolder of the install folder)

Any string,
can be empty

name String A user-specified name for this element Any string,
can be empty

3.2 Channels

Once an element has been added, it can be linked to a channel.

3.2.1 Adding a Channel

Once a file or RTSP element has been added, and its index is known, this index can be used to link it to
a channel A channel may be added by sending a POST request to /api/channels. A sample channel
object is shown below:

{
"name": "",
"enabled": true,
"input": 5,
"output": null,
"license": 1,
"event_retrigger_time": 5,
"tracking_engine": "object_tracker",
"tracker": {

"stationary_time": 5000,
"stationary_hold_on_time": 60000,
"minimum_object_size": 10,
"detection_point": 0,

7

"sensitivity_threshold": 4
},
"calibration": {

"enabled": false,
"height": 4,
"tilt": 50,
"fov": 40,
"roll": 0,
"pan": 0,
"horizon": false,
"grid": {

"enabled": true,
"stroke": {

"r": 115,
"g": 210,
"b": 22,
"a": 1

},
"fill": {

"r": 136,
"g": 138,
"b": 133,
"a": 0

},
"spacing": 2

}
},
"tamper": {

"enabled": false,
"alarm_timeout": 20000,
"area_threshold": 40,
"low_light": false

},
"scene_change": {

"mode": 1,
"alarm_timeout": 3000,
"area_threshold": 40

},
"annotation": {

"zones": false,
"objects": true,
"class": false,
"height": false,
"speed": false,
"area": false,
"ticker": true,
"blob_map": true,
"dl_class": true,

8

"system_message": true,
"line_counters": true,
"counters": true,
"colour_signature": true,
"tracker_internal_state": false

},
"classification": [

{
"name": "Person",
"area": {

"min": 5,
"max": 20

},
"speed": {

"min": 0,
"max": 20

}
},
{

"name": "Vehicle",
"area": {

"min": 40,
"max": 1000

},
"speed": {

"min": 0,
"max": 200

}
},
{

"name": "Clutter",
"area": {

"min": 0,
"max": 4

},
"speed": {

"min": 0,
"max": 50

}
},
{

"name": "Group Of People",
"area": {

"min": 21,
"max": 39

},
"speed": {

"min": 0,

9

"max": 20
}

}
],
"stabilisation": {

"enabled": false
},
"dl_filter": {

"available": true,
"classes": [

{
"label": "person",
"allowed": true,
"threshold": 0.5

},
{

"label": "vehicle",
"allowed": true,
"threshold": 0.5

}
]

},
"colour_signature": {

"enabled": false
}

}

Below is a list of properties of a channel object

Property Type Description Possible values

name String A user-specified name for this element Any string, can be
empty

enabled Boolean A boolean value specifying whether this
channel is enabled

true or false

input Unsigned
integer

The index of a file or RTSP element to use
as the input for this channel

Any unsigned
integer

output Unsigned
integer

This property is deprecated, and must
always be set to null

Any unsigned
integer, or null

license Unsigned
integer

The index of a license object to use as the
license for this channel

Any unsigned
integer

event_retrigger_timeUnsigned
integer

The time (in milliseconds) that must
elapse before an event is re-triggered

Any unsigned
integer

tracking_engineString Defines the tracking engine that will be
run on the channel

Any valid tracker
engine string,
object_tracker
or
dl_people_tracker

tracker Object Tracking engine specific settings Any valid tracker
object

10

Property Type Description Possible values

calibrationObject The calibration object specifying the
calibration parameters of this channel

Any valid calibration
object

tamper Object The tamper object specifying the tamper
parameters of this channel

Any valid tamper
object

scene_changeObject The scene_change object specifying the
scene-change parameters of this channel

Any valid
scene-change
object

annotationObject The annotation object specifying which
metadata annotations are rendered on
the channel

Any valid
annotation object

classificationArray of
classification
objects

The array of classification objects to use
for this channel

Any valid array of
classification
objects

stabilisationObject The stabilisation object specifying
the stabilisation parameters of this
channel

Any valid
stabilisation object

dl_filter Object The object specifying the dl_filter
parameters of this channel

Any valid
stabilisation object

colour_signatureObject The colour_signature object
specifying the colour signature
parameters of this channel

Any valid colour
signature object

The following are theproperties of atrackerobject, properties apply to a specifictracking_engine:

Property Type Description
Possible
values

stationary_timeUnsigned
integer

object_tracker value: defines in ms, the time
detected motion must be static before it is defined as
abandoned/removed

Any unsigned
integer

stationary_hold_on_timeUnsigned
integer

object_tracker value: defines in ms, the time a
stationary object continues to be tracked for

Any unsigned
integer

minimum_object_sizeUnsigned
integer

object_tracker value: the number of tracking
pixels that detected motion must contain before it is
classed as a tracked object.

Any unsigned
integer

detection_pointUnsigned
integer

object_tracker value: defines the location of the
ground point for a bounding box. 0 automatic, 1
bottom mid of bounding box, 2 centre of bounding
box

0, 1, or 2

sensitivity_thresholdFloat object_tracker value: defines how sensitive the
object tracker is to movement

1-16

The following are the properties of a calibration object:

11

Property Type Description
Possible
values

enabled Boolean A boolean value specifying whether calibration is
enabled for this channel

true or
false

height Unsigned
integer

The height of the camera in meters Any unsigned
integer

tilt Unsigned
integer

The ‘tilt’ of the camera in degrees Any unsigned
integer

fov Unsigned
integer

The ‘field of view’ parameter of the camera in degrees Any unsigned
integer

roll Unsigned
integer

The ‘roll’ value of the camera in degrees Any unsigned
integer

pan Unsigned
integer

The ‘pan’ value of the camera in degrees Any unsigned
integer

horizon Boolean A boolean value specifying whether the horizon is
displayed in the calibration grid

true or
false

grid Object An object specifying the calibration grid parameters Any valid grid
object

Below is a list of the properties of the grid object:

Property Type Description Possible values

stroke Object A colour object specifying the stroke colour of
the calibration grid

Any valid colour object

fill Object A colour object specifying the fill colour of the
calibration grid

Any valid colour object

spacing Unsigned
integer

The spacing between lines in the calibration
grid

Any unsigned integer

Below is a list of the properties of the tamper object:

Property Type Description
Possible
values

enabled Boolean A boolean value specifying whether tamper
detection is enabled for this channel

true or
false

alarm_timeoutUnsigned
integer

The alarm hold-off time (in milliseconds) Any unsigned
integer

area_thresholdUnsigned
integer

The area threshold (percentage change) for tamper
detection

Any unsigned
integer

low_light Boolean A boolean value specifying whether low light
tamper detection should be enabled

true or
false

Below is a list of the properties of the scene_change object:

12

Property Type Description Possible values

mode Unsigned
integer

An integer specifying the
scene-change detection mode

0 for Disabled, 1 for automatic
and 2 for manual

alarm_timeoutUnsigned
integer

The alarm hold-off time (in
milliseconds)

Any unsigned integer

area_thresholdUnsigned
integer

The area threshold (percentage
change) for tamper detection

Any unsigned integer

Below is a list of the properties of the classification object:

Property Type Description
Possible
values

name String A user-specified name for this element Any string,
can be empty

area Object A threshold object to specify the minimum and maximum
area cut-off for this class. The area unit is square meter

Any valid
threshold
object

speed Object A threshold object to specify the minimum and maximum
speed cut-off for this class. The speed unit is kilometres per
hour

Any valid
threshold
object

Below is a list of the properties of the threshold object:

Property Type Description Possible values

min Unsigned integer The minimum value Any unsigned integer
max Unsigned integer The maximum value Any unsigned integer

Below is a list of the properties of the stabilisation object:

Property Type Description
Possible
values

enabled Boolean A boolean value specifying whether the stabilisation is
enabled for this channel

true or
false

Below is a list of the properties of the dl_filter object:

Property Type Description
Possible
values

availableBoolean A system defined boolean value specifying whether the deep
learning filter is available for this channel

true or
false

classes Object A system generated list of object classes the deep learning
filter can detect

classes
object

13

Below is a list of the properties of the classes object:

Property Type Description Possible values

label String A system-specified label for an object class String
allowed Boolean A boolean value specifying whether the deep learning

filter is checking for this ‘label’
true or false

thresholdFloat A threshold to specify the minimum confidence score
required for the object to be classed as the ‘label’

Float between 0 -
.99 inclusive

Below is a list of the properties of the colour_signature object:

Property Type Description
Possible
values

enabled Boolean A boolean value specifying whether the colour signature
is enabled for this channel

true or
false

Finally, the observables must be added and linked to the channel. There are two observables: one for
analytics, and one for loss of signal. Observables allow the events from a specific channel to trigger an
action.

3.2.2 Channel Snapshots

A snapshot API is provided which will provide a JPEG encoded image from a defined channel. The
resolution of the JPEGwill be defined by the input resolution of the stream. A snapshot can be retrieved
by sending a GET request to the snapshot endpoint:

http://SERVER_IP:PORT/snapshot/CHANNEL_ID/latest

It is a requirement to add the Content-Type: image/jpeg header to all requests to the snapshot
API.

When a snapshot API request is sent to VCAcore, the JPEG image is generated on demand. JPEG en-
coding is a resource intensive process and therefore this API is not designed for channel monitoring at
high frame rates. As such it is advised that calls made to this API are done so sparingly.

14

Chapter 4

REST API Observables and Other Sources

4.1 Overview

An observable is an object whichmonitors themetadata produced by VCAcore and generates an event
when specific triggers are met. Commonly, observables are used to represent ‘rules’ which are asso-
ciated with a channel that fires an event when a specific condition is met by objects tracked in that
channel (e.g. presence or dwell).

An observable can also represent one of VCAcore’s ‘other sources’, these work at a global, rather than
channel, level triggering events when a specific global trigger is detected (e.g. VCAcore being Armed or
when a scheduled time passes).

Observables can be linked to actions, so that when an event is generated by an observable, an action
is performed.

4.1.1 General Concepts

To add an observable, send a POST request to the /api/observables endpoint. Please use the
method mentioned earlier to add this element. A sample ‘Presence’ observable is shown below:

{
"typename": "vca.observable.Presence",
"channel": 0,
"zone": 4294967295,
"name": "Presence 5",
"dependents": [],
"triggers_action": true

}

Below is a list of properties that are common to all observables:

Property Type Description Possible values

name String A user-specified name for this element Any string, can be empty
dependentsArray The array of observables this

observable depends on
Any array of unsigned integers,
can be an empty array

15

Property Type Description Possible values

triggers_actionBoolean A boolean specifying whether this
observable can trigger actions

true or false

For a complete overview of observable types (Basic Rules, Filters, Conditional Rules andOther Sources),
including their function and use cases, please see the full VCAcore Manual.

What follows is a list of all the supported types of observables in VCAcore:

4.2 Basic Rules

4.2.1 Abandoned Observable

The ‘Abandoned’ observable is a basic observable which generates an event when an object has been
either left within a defined zone or when an object is removed from a defined zone. Please use the
method mentioned earlier to add this element. A sample ‘Abandoned’ observable is shown below:

{
"typename": "vca.observable.Abandoned",
"channel": 0,
"zone": 3,
"name": "Abandoned 5",
"dependents": [],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned
integer

zone Integer The index of a zone to associate with this
observable

Any unsigned
integer

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Note: As this is a basic rule, its dependents array should always be empty.

4.2.2 Appear Observable

The ‘Appear’ observable is a basic observable which generates an event when an object starts being
tracked within a zone, e.g. a person who appears in the scene from a doorway. Please use the method
mentioned earlier to add this element. A sample ‘Appear’ observable is shown below:

16

https://documentation.vcatechnology.com/#rules

{
"typename": "vca.observable.Appear",
"channel": 0,
"zone": 3,
"name": "Appear 5",
"dependents": [],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned
integer

zone Integer The index of a zone to associate with this
observable

Any unsigned
integer

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Note: As this is a basic rule, its dependents array should always be empty.

4.2.3 Direction Observable

The ‘Direction’ observable is a basic observable which generates an event when an object is moving in
a specific direction. Please use the method mentioned earlier to add this element. A sample ‘Direction’
observable is shown below:

{
"typename": "vca.observable.Direction",
"channel": 0,
"angle": 77,
"anglethreshold": 51,
"zone": 0,
"name": "Direction 3",
"dependents": [],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned integer

angle Integer The direction an object should be travelling to
trigger an event

Any unsigned integer
0 - 360

17

Property Type Description Possible values

anglethresholdInteger The threshold of angles accepted by the rule Any unsigned integer
0 - 90

zone Integer The index of a zone to associate with this
observable

Any unsigned integer

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Note: As this is a basic rule, its dependents array should always be empty.

4.2.4 Disappear Observable

The ‘Disappear’ observable is a basic observable which generates an event when an object stops being
tracked within a zone, e.g. a person who exits the scene through a doorway. Please use the method
mentioned earlier to add this element. A sample ‘Disappear’ observable is shown below:

{
"typename": "vca.observable.Disappear",
"channel": 0,
"zone": 3,
"name": "Disappear 5",
"dependents": [],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned
integer

zone Integer The index of a zone to associate with this
observable

Any unsigned
integer

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Note: As this is a basic rule, its dependents array should always be empty.

4.2.5 Deep Learning Presence Observable

The ‘Deep Learning Presence’ observable is a basic observable which generates an event when an
object is present inside a zone and is also classified as one of the classes configured in the channel
dl_filter settings. For this observable to generate an event, the dl_filter must have enabled
set to true. The deep learning presence observable cannot be used an input for any other observable.

18

Please use the method mentioned earlier to add this element. A sample ‘Deep Learning Presence’
observable is shown below:

{
"typename": "vca.observable.DLPresence",
"channel": 0,
"zone": 3,
"name": "Deep Learning Presence 1",
"dependents": [],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned
integer

zone Integer The index of a zone to associate with this
observable

Any unsigned
integer

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Note: As this is a basic rule, its dependents array should always be empty.

4.2.6 Dwell Observable

The ‘Dwell’ observable is a basic observable which generates an event when an object has remained in
a zone for a specified amount of time. Please use the method mentioned earlier to add this element.
A sample ‘Dwell’ observable is shown below:

{
"typename": "vca.observable.Dwell",
"channel": 0,
"zone": 0,
"interval": 10000,
"name": "Dwell 3",
"dependents": [],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned
integer

19

Property Type Description Possible values

interval Unsigned
Integer

The interval value of this observable, in
milliseconds

Any unsigned
integer

zone Integer The index of a zone to associate with this
observable

Any unsigned
integer

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Note: As this is a basic rule, its dependents array should always be empty.

4.2.7 Enter Observable

The ‘Enter’ observable is a basic observable which generates an event when an object enter a zone
e.g when an object crosses from the outside of a zone to the inside of a zone. Please use the method
mentioned earlier to add this element. A sample ‘Enter’ observable is shown below:

{
"typename": "vca.observable.Enter",
"channel": 0,
"zone": 3,
"name": "Enter 5",
"dependents": [],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned
integer

zone Integer The index of a zone to associate with this
observable

Any unsigned
integer

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Note: As this is a basic rule, its dependents array should always be empty.

4.2.8 Exit Observable

The ‘Exit’ observable is a basic observable which generates an event when an object leaves a zone e.g
when an object crosses from the inside of a zone to the outside of a zone. Please use the method
mentioned earlier to add this element. A sample ‘Exit’ observable is shown below:

20

{
"typename": "vca.observable.Exit",
"channel": 0,
"zone": 3,
"name": "Exit 5",
"dependents": [],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned
integer

zone Integer The index of a zone to associate with this
observable

Any unsigned
integer

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Note: As this is a basic rule, its dependents array should always be empty.

4.2.9 Line Counter Observable

The ‘Line Counter’ observable is a basic observablewhich generates an eventwhen anobject is detected
crossing a line. The referenced zone must be configured as a line, not a polygon.

Please use the method mentioned earlier to add this element. A sample ‘Line Counter’ observable is
shown below:

{
"typename": "vca.observable.Line_Counter",
"channel": 0,
"direction": "both",
"zone": 5,
"calibration_width": 0,
"filter_shadows": false,
"name": "Line Counter 10",
"dependents": [],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned integer

21

Property Type Description Possible values

direction String Defines the direction the line counter detects
movement

String - “both” or “a” or “b”

zone Integer The index of a zone to associate with this
observable

Any unsigned integer

calibration_widthFloat Defines the expected width of an object to
cross the line, counts to go up by more than 1

Any unsigned float - 0 to
turn the calibration off

filter_shadowsBooleanA boolean value specifying whether to filter
shadows

true or false

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Note: As this is a basic rule, its dependents array should always be empty.

4.2.10 Loss of Signal Observable

This observable generates events when a stream is interrupted. Please use the method mentioned
earlier to add this element. A sample ‘Loss-of-signal’ observable is shown below:

{
"typename": "vca.observable.LossOfSignal",
"heartbeat_frequency": 1000,
"channel": 0,
"name": " - Loss of Signal",
"dependents": [],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned
integer

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Note: As this is a basic rule, its dependents array should always be empty.

4.2.11 Presence Observable

The ‘Presence’ observable is a basic observable which generates an event when an object is present
inside a zone. Please use the method mentioned earlier to add this element. A sample ‘Presence’
observable is shown below:

22

{
"typename": "vca.observable.Presence",
"channel": 0,
"zone": 4294967295,
"name": "Presence 5",
"dependents": [],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned
integer

zone Integer The index of a zone to associate with this
observable

Any unsigned
integer

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Note: As this is a basic rule, its dependents array should always be empty.

4.2.12 Stopped Observable

The ‘Stopped’ observable is a basic observable which generates an event when an object is stationary
inside a zone for longer than the specified amount of time. Please use the method mentioned earlier
to add this element. A sample ‘Stopped’ observable is shown below:

{
"typename": "vca.observable.Stopped",
"zone": 4,
"duration": 10000,
"channel": 0,
"name": "Stopped 3",
"dependents": [],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned
integer

zone Integer The index of a zone to associate with this
observable

Any unsigned
integer

23

Property Type Description Possible values

duration Unsigned
Integer

The interval value of this observable, in
milliseconds

Any unsigned
integer

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Note: As this is a basic rule, its dependents array should always be empty.

4.2.13 Tailgating Observable

The ‘Tailgating’ observable is a basic observable which generates an event when an object crosses
through a zone or over a line within a set duration of one another. Please use the method mentioned
earlier to add this element. A sample ‘Tailgating’ observable is shown below:

{
"typename": "vca.observable.Tailgating",
"channel": 0,
"zone": 0,
"duration": 2000,
"name": "Tailgating 3",
"dependents": [],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned
integer

duration Unsigned
Integer

The duration value of this observable, in
milliseconds

Any unsigned
integer

zone Integer The index of a zone to associate with this
observable

Any unsigned
integer

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Note: As this is a basic rule, its dependents array should always be empty.

24

4.3 Filters

4.3.1 Speed Filter Observable

The ‘Speed Filter’ observable is a filter which generates an event when the object which has triggered
the input observable is travelling between a min and max speed. For this observable to generate an
event, the channel must have been calibrated. Please use the method mentioned earlier to add this
element. A sample ‘Speed Filter’ observable is shown below:

{
"typename": "vca.observable.Speed",
"channel": 0,
"input": 8,
"minspeed": 3,
"maxspeed": 10,
"name": "Speed Filter 11",
"dependents": [

8
],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is associated
with

Any unsigned
integer

input Integer The index of another observable, which becomes the
input

Any unsigned
integer

minspeed Integer The minimum speed an object must be travelling to be
accepted by the rule

Any unsigned
integer

maxspeed Integer The maximum speed an object must be travelling to
be accepted by the rule

Any unsigned
integer

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Note: As this is a filter, for this observable to function correctly, the input and the dependents property
must be kept in-sync. As an example, if the observable has 7 as input, its dependents property
should be the list:

[
7

]

25

https://documentation.vcatechnology.com/#calibration

4.3.2 Object Filter Observable

The ‘Object Filter’ observable is a filter which generates an event when the object which has triggered
the input observable is classed as one of the classes in the filter array. A class must match one
of the channel classification entries. For this observable to generate an event, the channel
must have been calibrated. Please use the method mentioned earlier to add this element. A sample
‘Object Filter’ observable is shown below:

{
"typename": "vca.observable.ObjectFilter",
"channel": 0,
"input": 8,
"filters": [

"Person",
"Vehicle"

],
"name": "Object Filter 12",
"dependents": [

8
],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned integer

input Integer The index of another observable, which
becomes the input

Any unsigned integer

filters Array Array of strings defining object classes found
under a channel classification

Any array of strings, can
be an empty array

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Note: As this is a filter, for this observable to function correctly, the input and the dependents property
must be kept in-sync. As an example, if the observable has 7 as input, its dependents property
should be the list:

[
7

]

26

https://documentation.vcatechnology.com/#calibration

4.3.3 Colour Filter Observable

The ‘Colour Filter’ observable is a filter which generates an event when the object which has triggered
the input observable has 5% or more of the any colour defined under filters. For this observable
to generate an event, the channel must have the colour signature algorithm enabled. Please use the
methodmentioned earlier to add this element. A sample ‘Colour Filter’ observable is shown belowwith
all ten possible colours defined under ‘filters’:

{
"typename": "vca.observable.ColourFilter",
"channel": 0,
"input": 6,
"filters": [

"Black",
"Grey",
"Blue",
"Brown",
"Cyan",
"Green",
"Red",
"Magenta",
"White",
"Yellow"

],
"name": "Colour Filter 13",
"dependents": [

6
],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable
is associated with

Any unsigned integer

input Integer The index of another observable, which
becomes the input

Any unsigned integer

filters Array Array of strings defining colours Any array of strings, can be an
empty array

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Note: As this is a filter, for this observable to function correctly, the input and the dependents property
must be kept in-sync. As an example, if the observable has 7 as input, its dependents property
should be the list:

27

[
7

]

4.3.4 Deep Learning Filter Observable

The ‘Deep Learning Filter’ observable is a filter which generates an event when the object which has
triggered theinputobservable is classed as oneof the classes configured in thechanneldl_filter
settings. For this observable to generate an event, the dl_filter must have enabled set to true.
The deep learning filter observable cannot be used an input for any other observable. Please use the
method mentioned earlier to add this element. A sample ‘Deep Learning Filter’ observable is shown
below:

{
"typename": "vca.observable.DeepLearningFilter",
"channel": 0,
"input": 5,
"name": "Deep Learning Filter 14",
"dependents": [

5
],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned
integer

input Integer The index of another observable, which becomes
the input

Any unsigned
integer

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Note: As this is a filter, for this observable to function correctly, the input and the dependents property
must be kept in-sync. As an example, if the observable has 7 as input, its dependents property
should be the list:

[
7

]

4.3.5 Source Filter Observable

The ‘Source Filter’ observable is a filter which generates an event when the input observable triggers
an event and the source observable is in an on state. Valid inputs for use as a source are either

28

the Schedule or HTTP other source observables. Please use the method mentioned earlier to add this
element. A sample ‘Deep Learning Filter’ observable is shown below:

{
"typename": "vca.observable.SourceFilter",
"channel": 0,
"input": 5,
"source": 7,
"name": "Source Filter",
"dependents": [

5
],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned
integer

input Integer The index of another observable, which becomes
the input

Any unsigned
integer

source Integer The index of a HTTP or Schedule other source
observable

Any unsigned
integer

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Note: As this is a filter, for this observable to function correctly, the input and the dependents property
must be kept in-sync. As an example, if the observable has 7 as input, its dependents property
should be the list:

[
7

]

4.4 Conditional Rules

4.4.1 And Observable

The And observable is a representation of the logical ‘AND’ operation. Please use the method men-
tioned earlier to add this element. A sample ‘And’ observable is shown below:

{
"typename": "vca.observable.And",
"channel": 0,
"inputa": 4,

29

"inputb": 5,
"constrain_target": true,
"name": "And 2",
"dependents": [

4,
5

],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned
integer

inputa Integer The index of another observable, which becomes
the first input

Any unsigned
integer

inputb Integer The index of another observable, which becomes
the second input

Any unsigned
integer

constrain_targetBoolean A boolean specifying whether this observable
generates events per-target

true or false

For a list of properties common to all observables, please see the General concepts section on Observ-
ables.

Please note that as this observable is a Conditional Rule, for this observable to function correctly, the
two inputs and the dependents property must be kept in-sync. As an example, if the observable has 3
as inputa, and 4 as inputb, its dependents property should be the list:

[
3,
4

]

4.4.2 Continuously Observable

The ‘Continuously’ observable generates an eventwhen another event has been occurring continuously
for a certain amount of time. The time parameter is user-specified. Please use the method mentioned
earlier to add this element. A sample ‘Continuously’ observable is shown below:

{
"typename": "vca.observable.Continuously",
"interval": 1000,
"channel": 0,
"input": 6,
"constrain_target": true,
"name": "Continuously 3",

30

"dependents": [
6

],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned
integer

input Integer The index of another observable, which becomes
the input to this one

Any unsigned
integer

interval Unsigned
Integer

The interval value of this observable, in
milliseconds

Any unsigned
integer

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Please note that as this observable is a Conditional Rule, for this observable to function correctly, the
two inputs and the dependents property must be kept in-sync. As an example, if the observable has 9
as input, its dependents property should be the list:

[
9

]

4.4.3 Counter Observable

The ‘Counter’ observable generates an event when the value of count changes. The count value is
defined by the input observables which either increment, decrement, or define its occupancy. Please
use the method mentioned earlier to add this element. A sample ‘Counter’ observable is shown below:

{
"typename": "vca.observable.Counter",
"channel": 0,
"count": -20,
"x": 32767,
"y": 32767,
"increment_inputs": [

2,
6

],
"decrement_inputs": [

7
],
"occupancy_inputs": [

31

8
],
"name": "Counter 17",
"dependents": [

2,
7,
8,
6

],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned integer

count Integer The index of another observable, which becomes
the input to this one

Any unsigned integer

x Integer The x coordinate of the counter Any unsigned integer
between 0 and 65535
(inclusive)

y Integer The y coordinate of the counter Any unsigned integer
between 0 and 65535
(inclusive)

increment_inputsArray The array of observables which will increment
count when an they trigger an event

Any array of unsigned
integers, can be an
empty array

decrement_inputsArray The array of observables which will decrement
count when an they trigger an event

Any array of unsigned
integers, can be an
empty array

occupancy_inputsArray The array of observables which will add to count
the number of objects which are triggering the
observable

Any array of unsigned
integers, can be an
empty array

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Please note that as this observable is a Conditional Rule, for this observable to function correctly, the
three inputs and the dependents property must be kept in-sync. As an example, if the observables has
2, and 6 are increment_inputs, 7 is a decrement_inputs and 8 is a occupancy_inputs its
dependents property should be the list:

[
2,
7,
8,
6

32

]

4.4.4 Or Observable

The Or observable is a representation of the logical ‘OR’ operation. Please use the method mentioned
earlier to add this element. A sample ‘Or’ observable is shown below:

{
"typename": "vca.observable.Or",
"channel": 0,
"inputa": 2,
"inputb": 7,
"constrain_target": true,
"name": "Or 4",
"dependents": [

2,
7

],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

channel Integer The index of the channel this observable is
associated with

Any unsigned
integer

inputa Integer The index of another observable, which becomes
the first input

Any unsigned
integer

inputb Integer The index of another observable, which becomes
the second input

Any unsigned
integer

constrain_targetBoolean A boolean specifying whether this observable
generates events per-target

true or false

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Please note that as this observable is a Conditional Rule, for this observable to function correctly, the
two inputs and the dependents property must be kept in-sync. As an example, if the observable has 3
as inputa, and 4 as inputb, its dependents property should be the list:

[
3,
4

]

33

4.4.5 Previous Observable

The ‘Previous’ observable generates an event when another event has occurred previously, within a
certain amount of time. The time parameter is user-specified. Please use the method mentioned
earlier to add this element. A sample ‘Previous’ observable is shown below:

{
"typename": "vca.observable.Previous",
"interval": 1000,
"channel": 0,
"input": 5,
"constrain_target": true,
"name": "Previous 6",
"dependents": [

5
],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description
Possible
values

channel Integer The index of the channel this observable is
associated with

Any unsigned
integer

input Integer The index of another observable, which
becomes the input

Any unsigned
integer

interval Unsigned
Integer

The interval value of this observable, in
milliseconds

Any unsigned
integer

constrain_targetBoolean A boolean specifying whether this observable
generates events per-target

true or
false

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

Please note that as this observable is a Conditional Rule, for this observable to function correctly, the
two inputs and the dependents property must be kept in-sync. As an example, if the observable has 7
as input, its dependents property should be the list:

[
7

]

34

4.5 Other Sources

4.5.1 Armed

The ‘Armed’ observable is a channel-independent observable which generates an event when the VCA-
core system is Armed. Please use themethodmentioned earlier to add this element. A sample ‘Armed’
observable is shown below:

{
"typename": "vca.observable.Armed",
"name": "Armed Source",
"dependents": [],
"triggers_action": true

}

The ‘Armed’ observable does not have any specific properties. For a list of properties common to all
observables, please see the General Concepts section on Observables.

4.5.2 Disarmed

The ‘Disarmed’ observable is a channel-independent observable which generates an event when the
VCAcore system is Disarmed. Please use the method mentioned earlier to add this element. A sample
‘Disarmed’ observable is shown below:

{
"typename": "vca.observable.Disarmed",
"name": "Disarmed Source",
"dependents": [],
"triggers_action": true

}

The ‘Disarmed’ observable does not have any specific properties. For a list of properties common to
all observables, please see the General Concepts section on Observables.

4.5.3 HTTP

The ‘HTTP’ observable is a channel-independent observable which generates an event each time the
state value is changed to true. Please use the method mentioned earlier to add this element. A
sample ‘HTTP’ observable is shown below:

{
"typename": "vca.observable.Http",
"state": true,
"name": "Http Source",
"dependents": [],
"triggers_action": true

}

35

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

state Boolean A boolean specifying whether this observable is
on or off

true or false

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

4.5.4 Interval

The ‘Interval’ observable is a channel-independent observable which generates an event each time the
interval period passes. Please use the method mentioned earlier to add this element. A sample
‘Interval’ observable is shown below:

{
"typename": "vca.observable.Interval",
"interval": 1000,
"name": "Interval Source",
"dependents": [],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

interval Unsigned
Integer

The interval value of this observable, in
milliseconds

Any unsigned
integer

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

4.5.5 Schedule

The ‘Schedule’ observable is a channel-independent observablewhich generates an eventwhen the sys-
tem clock coincides with a scheduled ‘on’ period. Events are generated once per on period (if VCAcore
is started during an on period a single event is fired as soon as possible). When set_arm_disarm
is true, VCAcore will be armed and disarmed according to the periods of on / off defined by the
schedule. Please use themethodmentioned earlier to add this element. A sample ‘Schedule’ observ-
able is shown below:

{
"typename": "vca.observable.Schedule",
"schedule": [

36

"00",
"00",
"000000000000000111111111110000000000000000000000",
"000000000000000000001111111111111000000000000000",
"000011111111111111111100000000000000000000000000",
"00",
"00"

],
"set_arm_disarm": false,
"name": "Schedule Source",
"dependents": [],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

Property Type Description Possible values

schedule String
Array

Array of seven strings, forty-eight characters in
size. Each character is a binary digit

Array of 7, 48 binary
character strings

set_arm_disarmBoolean A boolean specifying whether this observable
also sets the armed state of VCAcore

true or false

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables. I

4.5.6 System

The ‘System’ observable is a channel-independent observablewhich generates an eventwhen the speci-
fiedresource_typepasses a setthreshold. Eventswill continue to sendwhilst the setthreshold
is met each time the min_interval duration has passed if repeat_events is true. Please use the
method mentioned earlier to add this element. A sample ‘System’ observable is shown below:

{
"typename": "vca.observable.System",
"resource_type": "Gpu Utilisation",
"threshold": 0,
"min_interval": 60000,
"repeat_events": true,
"name": "System Alarm Source",
"dependents": [],
"triggers_action": true

}

In addition to the common properties described above, below is a list of properties specific to this
observable:

37

Property Type Description Possible values

resource_typeString String defining the system resource to monitor Only Gpu
Utilisation

threshold Unsigned
Integer

Percentage threshold that must be reached to
trigger an event

Unsigned integer
between 0 and 1

min_intervalUnsigned
Integer

The interval value between each triggered
event, in milliseconds

Any unsigned integer

repeat_eventsBoolean A boolean specifying whether this observable
can repeatedly trigger events

true or false

For a list of properties common to all observables, please see the General Concepts section on Observ-
ables.

38

Chapter 5

REST API Zones, Actions and VCAcore Status

5.1 Zones

5.1.1 Adding a Zone

To add a zone, send a POST request to the /api/zones endpoint. Unlike other elements, a zone
does not have a typename property, so a zone may be added by sending a single POST request to the
endpoint mentioned above with the correct payload. A sample zone is given below:

{
"name": "Zone 0",
"channel": 4,
"points": [

{
"x": 20585,
"y": 17374

},
{

"x": 23368,
"y": 51893

}
],
"colour": {

"r": 252,
"g": 175,
"b": 62

},
"polygon": false,
"detection": true

}

The properties of a zone object are given below:

PropertyType Description Possible values

name String A user-defined name for this zone Any string, can be empty

39

PropertyType Description Possible values

channelUnsigned
integer

The identifier of the channel this zone is
associated with

Any unsigned integer

points Array of
objects

An array of point objects A point object array that has a
minimum of two points

colour Object A colour object specifying the colour of the
zone, without the alpha("a") property

Any valid colour object, with
no alpha property

polygonBoolean An boolean specifying whether this zone
should be treated as a polygon (true) or a
line (false)

true or false

detectionBoolean An boolean specifying whether detection is
enabled on this zone

true or false

5.2 Actions

Actions are objects that represent an operation that can be performed by the application. Actions can
be linked to observables so that when an observable fires an event, the event causes the action to be
triggered.

5.2.1 General Concepts

Actions can be added by sending a POST request to the /api/actions endpoint. Please use the
method mentioned earlier to add this element. A sample TCP action is shown below:

{
"typename": "vca.action.Tcp",
"uri": "192.168.5.3",
"port": 0,
"body": "{ "event_name":{{name}} } ",
"name": "TcpActionAddTest",
"observables": [

5,
4

],
"always_trigger": false

}

The following is a list of the properties common to all actions:

Property Type Description Possible values

name String A user-defined name for this action Any string, can be
empty

observablesArray of
indices

An array of indexes of observables to
associated with this action

Any array of unsigned
integers (can be
empty)

40

Property Type Description Possible values

always_triggerBoolean A boolean specifying whether this action
triggers irrespective of the armed state of the
device

true or false

What follows is a list of all actions supported in VCAcore.

5.2.2 TCP Action

A TCP action sends data to a user-specified endpoint. Please use the method mentioned earlier to add
this element. A sample TCP action is shown below:

{
"typename": "vca.action.Tcp",
"uri": "192.168.5.3",
"port": 0,
"body": "{ "event_name":{{name}} } ",
"name": "TcpActionAddTest",
"observables": [],
"always_trigger": false

}

The following is a list of properties specific to the TCP action:

Property Type Description Possible values

uri String The URI of the TCP server to send the data
to

Any string, can be empty

port Unsigned
integer

The port to connect to on the TCP server Any unsigned integer
between 0 and 63353
(inclusive)

body String Content of the action body, e.g VCAcore
metadata tokens, XML, JSON etc as
required

Any string, can be empty

For a list of properties common to all actions, please refer to the General Concepts section on actions.

5.2.3 HTTP Action

AnHTTP action sends an HTTP request to a user-specified endpoint. Please use themethodmentioned
earlier to add this element. A sample HTTP action is shown below:

{
"typename": "vca.action.Http",
"method": "GET",
"uri": "http://192.168.1.60",

41

"port": 0,
"headers": "Content-Type: application/json",
"body": "{"event_name":{{name}}, }",
"authentication": false,
"username": "",
"password": "",
"send_snapshot": false,
"pre_snapshots": 1,
"post_snapshots": 1,
"jpeg_quality": "average",
"interval": 10,
"multipart_name": "vca",
"name": "",
"observables": [],
"always_trigger": false

}

The following is a list of properties specific to the HTTP action:

Property Type Description Possible values

method String The HTTP verb to use when sending
the request

One of the following: "GET",
"POST", "PUT", "DELETE",
"HEAD"

uri String The URI of the HTTP Request Any string, can be empty
port Unsigned

integer
The port to connect to on the TCP
server

Any unsigned integer between 0
and 63353 (inclusive)

headers String Content of the HTTP action header Any string, can be empty
body String Content of the action body, e.g

VCAcore metadata tokens, XML, JSON
etc as required

Any string, can be empty

authenticationBoolean A boolean specifying whether to
enable authentication

true or false

usernameString The username to use when
authentication is enabled

Any string, can be empty

passwordString The password to use when
authentication is enabled

Any string, can be empty

send_snapshotBoolean A boolean value specifying whether
to send snapshots with the request

true or false

pre_snapshotsUnsigned
integer

The number of pre-event snapshots
to send with the request

Any unsigned integer between 0
and 10 (inclusive)

post_snapshotsUnsigned
integer

The number of post-event snapshots
to send with the request

Any unsigned integer between 0
and 5 (inclusive)

jpeg_qualityString The quality of the JPEG snapshots
that are sent with the request

One of the following: "worst",
"low", "average", "good",
"best"

intervalUnsigned
Integer

The time interval between snapshots
(in milliseconds)

Any unsigned integer between 0
and 1000 (inclusive)

42

Property Type Description Possible values

multipart_nameString The text assigned as multipart name
in the request

Letters, Numbers, Dashes,
Underscores and Square Brackets
only, cannot be empty

Please note multipart_name will need to be reflected in any scripts that handle this request,
for example in php; this would be by using $_FILES['vca'] where vca is the string set in the
multipart_name field

For a list of properties common to all actions, please refer to the General Concepts section on actions.

5.2.4 Email Action

An Email action sends an email in a user-specified format. Please use the method mentioned earlier
to add this element. A sample Email action is shown below:

{
"typename": "vca.action.Email",
"server": "",
"port": 0,
"encryption": "none",
"username": "",
"password": "",
"enable_authentication": false,
"verify_host_certificate": false,
"to": "",
"cc": "",
"bcc": "",
"from": "",
"subject": "{{type.string}} Cam ID {{#Channel}}{{id}}{{/Channel}}",
"format": "custom",
"body": "{{name}} triggered with at {{start.iso8601}}",
"send_snapshot": false,
"pre_snapshots": 0,
"post_snapshots": 0,
"jpeg_quality": "average",
"interval": 0,
"name": "",
"observables": [],
"always_trigger": false

}

Property Type Description Possible values

server String The URI of the SMTP Server to use for
sending the email

Any string, can be empty

43

Property Type Description Possible values

port Unsigned
integer

The port to connect to on the TCP server Any unsigned integer
between 0 and 63353
(inclusive)

encryptionString The encryption method to use when
connecting to the server. Both unencrypted
and STARTTLS methods are supported

Either "none" or
"start_tls"

username String The username to use when authentication
is enabled

Any string, can be empty

password String The password to use when authentication
is enabled

Any string, can be empty

enable_authenticationBoolean A boolean value specifying whether
authentication should be enabled

true or false

verify_host_certificateBoolean A boolean value specifying whether the
server’s SSL certificate should be verified

true or false

to String The ‘To’ field of the email Any string, can be empty
cc String The ‘CC’ field of the email Any string, can be empty
bcc String The ‘BCC’ field of the email Any string, can be empty
from String The ‘From’ field of the email Any string, can be empty
subject String Content of the email subject. Can use

VCAcore metadata tokens
Any string, can be empty

format String The string specifying the format of the
email body

Must always be set to
custom

body String Content of the action body, e.g VCAcore
metadata tokens, XML, JSON etc as
required

Any string, can be empty

send_snapshotBoolean A boolean value specifying whether to send
snapshots with the request

true or false

pre_snapshotsUnsigned
integer

The number of pre-event snapshots to
send with the request

Any unsigned integer
between 0 and 10 (inclusive)

post_snapshotsUnsigned
integer

The number of post-event snapshots to
send with the request

Any unsigned integer
between 0 and 5 (inclusive)

jpeg_qualityString The quality of the JPEG snapshots that are
sent with the request

One of the following:
"worst", "low",
"average", "good",
"best"

interval Unsigned
Integer

The time interval between snapshots (in
milliseconds)

Any unsigned integer
between 0 and 1000
(inclusive)

For a list of properties common to all actions, please refer to the General Concepts section on actions.

5.2.5 Arm Action

An ‘Arm’ action sets the state of the application to ‘armed’ When the application is armed, all actions
fire normally. Please use the method mentioned earlier to add this element. A sample ‘Arm’ action is

44

shown below:

{
"typename": "vca.action.Arm",
"name": "",
"observables": [],
"always_trigger": false

}

The ‘Arm’ action does not have any specific properties. For a list of properties common to all actions,
please refer to the General Concepts section on actions.

5.2.6 Disarm Action

A ‘Disarm’ action sets the state of the application to ‘disarmed’ When the application is disarmed, only
actionswithalways_trigger set totruewill fire. Other actionswill be prevented fromfiring. Please
use the method mentioned earlier to add this element. A sample ‘Disarm’ action is shown below:

{
"typename": "vca.action.Disarm",
"name": "",
"observables": [],
"always_trigger": false

}

The ‘Disarm’ action does not have any specific properties. For a list of properties common to all actions,
please refer to the General Concepts section on actions.

5.3 Status

5.3.1 User Credentials

To change the current password, a POST request must be sent to /api/auth/user/admin with the
following data:

{
"current": "CURRENT_PASSWORD_MD5_HASH",
"password": "NEW_PASSWORD_MD5_HASH"

}

The password hashes are computed as follows:

MD5("admin:vcatechnology.com:" + password)

Note that all following HTTP requests will need to be made with the updated password.

5.3.2 Armed State

The current armed state of VCAcore can be retrieved by sending a GET request to /api/arm

45

The armed state of VCAcore can also be set via the API by sending a POST request to /api/arm

with a payload containing either:

{
true

}

to arm VCAcore or:

{
false

}

to disarm VCAcore.

46

Chapter 6

Metadata APIs

VCAcore supports two methods to access metadata produced by the various algorithms running on a
channel.

• Server-Sent Events (SSE) stream
• RTSP Metadata stream

Both methods expose VCAcore’s metadata in JSON format, a detailed description of the data format is
outlined below.

6.1 Server-Sent Events (SSE) Endpoints

6.1.1 Channel

The SSEmetadata API endpoint for a channel is split into two categories, objects and events each of
which generates a separate message. For a comprehensive breakdown of the returned data formats
please see Metadata Format.

It is possible to filter which category ofmessage is sent by adding query parameters to the SSE endpoint.

For event messages only:

http://SERVER_IP:PORT/metadata/CHANNEL_ID?events=1

For object messages only:

http://SERVER_IP:PORT/metadata/CHANNEL_ID?objects=1

If neither parameter is specified, all messages will be generated and sent.

6.1.2 System Statistics

The SSE metadata API endpoint to retrieve system statistics is:

http://SERVER_IP:PORT/api/system-stats

47

System information covering system uptime, current processor load, graphics card information and
load and memory load can be retrieved. An example response is given below:

{
"cpu": {

"process": 0.0506757,
"processes": [

0.0506757
],
"temperature": 0,
"temperatures": [],
"total": 0.0473899,
"totals": [

0.0675676,
0.0945946,
0,
0.0273973

]
},
"gpus": [

{
"device": {

"address_id": 0,
"bus_id": 1,
"product": "Device 1f02",
"vendor": "NVIDIA Corporation"

},
"memory": {

"available": 8149336064,
"total": 8366784512,
"used": 217448448

},
"temperature": 49,
"utilisation": 0

}
],
"memory": {

"physical": {
"in_use": 4253986816,
"process": 216981504,
"total": 16673214464

},
"virtual": {

"in_use": 4253986816,
"process": 1548251136,
"total": 18820694016

}
},
"time": {

48

"now": "2020-07-20T14:12:25.246948405+01:00"
},
"uptime": {

"process": 2741172,
"system": 277573990

}
}

Please note the process and processes values belonging to cpu will not be populated when VCA-
core is run on Windows and will be set to 0.

6.1.3 Uptime

VCAcore has an uptime service which will return the time (ms) that the VCAcore process has been active
(the counter is reset each time the VCAcore process is reset) and the total time the system has been
active.

http://SERVER_IP:PORT/api/uptime

Example response below:

{
"process": 1987591,
"system": 276820400

}

Please note this endpoint is now depreciated and replaced by system-stats which includes both
uptime information as well as system performance information.

6.1.4 SSE Code Sample

Below is example Python code demonstrating how the channel SSE metadata stream, can be con-
sumed:

#!/usr/bin/python
The user must install the sseclient and requests packages using pip

from sseclient import SSEClient
import json
import requests

def do_something_useful(message):
metadata = json.loads(message.data)
print('Received metadata event')
print(json.dumps(metadata, indent=4, sort_keys=True))

if __name__ == '__main__':
SERVER_IP = '192.168.1.99'
PORT = '80'

49

CHANNEL_ID = 0
messages = SSEClient('http://' + SERVER_IP + ':' + PORT + '/metadata/' + str(CHANNEL_ID),

auth=requests.auth.HTTPDigestAuth('admin', 'admin'))
for msg in messages:

do_something_useful(msg)

6.2 RTSP Metadata Stream

In addition to a channel’s RTSP video stream, the metadata for that channel is also encoded into an
RTSP metadata stream.

The RTSP metadata endpoint for a channel is the same as the RTSP URL:

rtsp://SERVER_IP:RTSP_PORT/channels/CHANNEL_ID

6.2.1 RTSP Metadata Stream Code Sample

Example code in Python demonstrating how the RTSP metadata stream, can be consumed is available
for download here:

RTSP Metadata Python Example

50

public/example-metadata-rtsp.py

Chapter 7

Metadata Format

7.1 SSE Metadata Format

For a particular frame for a given channel, SSE metadata messages can be created in two categories.
A message can either contain data on the events generated by the rules configured on the channel,
example response below:

{
"2020-10-30T12:43:42.035830016Z": [

{
"typename":"vca.meta.data.Event",
"id":12841,
"name":"Deep Learning Presence 24",
"type":"Presence",
"category":"analytics",
"start":"2020-10-30T12:43:42.035830016Z",
"end":"2020-10-30T12:43:42.035830016Z",
"duplicate":true,
"objects":[

{
"typename":"vca.meta.data.Channel",
"id":2

},
{

"typename":"vca.meta.data.Zone",
"id":4,
"name":"Car Park",
"channel":2,
"colour":{

"r":114,
"g":159,
"b":207,
"a":255

},
"detection":"on",

51

"type":"polygon",
"outline":[

{
"x":0,
"y":26634

},
{

"x":34476,
"y":26634

},
{

"x":34476,
"y":23035

},
{

"x":0,
"y":23035

}
]

}
]

},
{

"typename": "vca.meta.data.Event",
"category": "analytics",
"type": "count",
"duplicate": false,
"start": "2020-10-30T12:42:59.835830016Z",
"end": "2020-10-30T12:43:42.035830016Z",
"id": 1247782,
"name": "South to North",
"objects": [

{
"id": 79,
"name": "South to North",
"position": {

"x": 54195,
"y": 9934

},
"typename": "vca.meta.data.count.Value",
"value": 105

},
{

"id": 79,
"typename": "vca.meta.data.Observable"

},
{

"id": 0,

52

"typename": "vca.meta.data.Channel"
}

]
}

]
}

Alternatively, a message can contain data on the objects tracked in the channel, example response
below:

{
"2018-10-02T16:51:55.782845060+01:00":[

{
"typename":"vca.meta.data.Object",
"id":2128,
"outline":[

{
"x":12910,
"y":33733

},
{

"x":27169,
"y":33733

},
{

"x":12910,
"y":65535

},
{

"x":27169,
"y":65535

}
],
"width":14259,
"height":31802,
"meta":[

{
"typename":"vca.meta.data.object.GroundPoint",
"value":{

"x":20040,
"y":65535

}
}

]
}

]
}

All messages contain a JSON object and each message type will only be generated if there is data to
send, e.g. if there are no tracked objects in the scene then there will be no message containing object

53

data.

Each JSON object has the ISO8601 timestamp of that particular frame as its only property. The value
associated with that property is an array of objects, details of which are outlined in Metadata Format.

7.2 RTSP Metadata Stream Format

Each RTSP metadata stream message is a JSON object for a particular frame for a given channel.

Each JSON object contains a timestamp and objects property. The timestamp property has an
ISO8601 timestamp value for the given frame. The objects property contains an array of objects,
details of which are outlined in Metadata Format..

{
"timestamp":"2020-09-08T16:52:34.011858944+01:00",
"objects":[

{
"typename":"vca.meta.data.Object",
"id":1380,
"outline":[

{
"x":10646,
"y":23724

},
{

"x":19021,
"y":23724

},
{

"x":10646,
"y":29627

},
{

"x":19021,
"y":29627

}
],
"width":8375,
"height":5903,
"meta":[

{
"typename":"vca.meta.data.object.GroundPoint",
"value":{

"x":14833,
"y":29627

}
},
{

54

"typename":"vca.meta.data.classification.Confidence",
"class":"vehicle",
"confidence":0.8999999761581421,
"object_id":1380

}
]

},
{

"typename":"vca.meta.data.Event",
"id":12841,
"name":"Deep Learning Presence 24",
"type":"Presence",
"category":"analytics",
"start":"2020-09-08T16:52:31.677858944+01:00",
"end":"2020-09-08T16:52:34.011858944+01:00",
"duplicate":true,
"objects":[

{
"typename":"vca.meta.data.Channel",
"id":2

},
{

"typename":"vca.meta.data.Zone",
"id":4,
"name":"Car Park",
"channel":2,
"colour":{

"r":114,
"g":159,
"b":207,
"a":255

},
"detection":"on",
"type":"polygon",
"outline":[

{
"x":0,
"y":26634

},
{

"x":34476,
"y":26634

},
{

"x":34476,
"y":23035

},
{

55

"x":0,
"y":23035

}
]

}
]

}
]

}

7.3 Metadata Objects

Each metadata object has a typename string property enabling its identification. Below is a list of
object types that may be found in the metadata API.

Note: Where coordinate data is present, VCAcore’s default is to provide this data as a 16-bit integer,
with 0-65535 representing the range from 0-1 in the frame. However, this upper limit is customisable.

7.3.1 Counter Value

The object representation of a line counter event. This object represents a change in the value of the
counter.

Example:

{
"typename": "vca.meta.data.count.Value",
"id": 5,
"name": "my counter",
"value": 0

}

Property Type Description Possible values

id Number The id of the counter this count value is
associated with

An unsigned integer

name String The name of the counter this count value is
associated with

Any string, can be
empty

value Number The value of the counter A signed integer

7.3.2 Counting Line

The object representation of a line counter event. This object contains data pertaining to the object
which has crossed the line.

Example:

56

{
"typename": "vca.meta.data.count.Line",
"rule_id": 4,
"width": 20,
"position": 3,
"count": 2,
"direction": false

}

Property Type Description Possible values

rule_id Number The rule id of this counting line associated with this
event

An unsigned
integer

width Number The width of the object which crossed the line An unsigned,
16-bit integer

position Number The position of object on the line An unsigned,
16-bit integer

count Number The number of objects crossing the line in this event An unsigned
integer

directionBoolean The direction in which the object has crossed the line,
with Left = false and Right = true

true/false

7.3.3 Scene Learning

An object indicating scene learning is in progress.

Example:

{
"typename": "vca.meta.data.Learning"

}

7.3.4 Tamper

An object indicating tamper is in progress.

Example:

{
"typename": "vca.meta.data.Tampered"

}

7.3.5 Tracked Objects

An object representing a tracked object.

{
"id": 56,

57

"width": 4726,
"height": 4914,
"meta": [

{
"typename": "vca.meta.data.object.GroundPoint",
"value": {

"x": 45686,
"y": 25667

}
},
{

"class": "person",
"confidence": 0.875215470790863,
"object_id": 56,
"typename": "vca.meta.data.classification.Confidence"

},
{

"typename": "vca.meta.data.ColourSignature",
"colours": [

{
"colour_name": "Black",
"colour_value": {

"r": 0,
"g": 0,
"b": 0

},
"proportion": 0.95555555820465088

},
{

"colour_name": "..."
}

]
}

],
"outline": [

{
"x": 43323,
"y": 20753

},
{

"x": 48049,
"y": 20753

},
{

"x": 43323,
"y": 25667

},
{

58

"x": 48049,
"y": 25667

}
],
"typename": "vca.meta.data.Object"

}

Property Type Description Possible values

id Number The id of this tracked object An unsigned integer
height Number The height of the objects bounding box

outline
An unsigned integer

width Number The width of the objects bounding box
outline

An unsigned integer

meta Array An array of additional metadata objects An array of valid metadata
objects

outline Array An array of objects with x/y coordinates
defining the bounding box for the object

For both x and y, valid values are
any unsigned 16-bit integer

7.3.6 Ground Point

The ground point of a tracked object.

Example:

{
"typename": "vca.meta.data.object.GroundPoint",
"value": {

"x": 45686,
"y": 25667

}
}

Property Type Description Possible values

value Object An object with x/y coordinates of
the ground point

For both x and y, valid values are any
unsigned 16-bit integer

7.3.7 Channel

The source channel of an object.

Example:

{
"typename": "vca.meta.data.Channel",
"id": 1

}

59

Property Type Description Possible values

id Number The id of this channel An unsigned integer

7.3.8 Observable

The source observable related to an object.

Example:

{
"typename": "vca.meta.data.Observable",
"id": 1

}

Property Type Description Possible values

id Number The id of this observable An unsigned integer

7.3.9 Zone

The zone data object.

Example:

{
"typename":"vca.meta.data.Zone",
"id":4,
"name":"Car Park",
"channel":2,
"colour":{

"r":114,
"g":159,
"b":207,
"a":255

},
"detection":"on",
"type":"polygon",
"outline":[

{
"x":0,
"y":26634

},
{

"x":34476,
"y":26634

},
{

60

"x":34476,
"y":23035

},
{

"x":0,
"y":23035

}
]

}

Property Type Description Possible values

id Number The id of this zone in the
configuration

An unsigned integer

name String The name of the zone Any string, can be empty
channel Number The id of this channel the zone is

configured on
An unsigned integer

colour Object A colour object specifying the
colour of the zone, without the
alpha("a") property

Any valid colour object, with no alpha
property

detectionBoolean An boolean specifying whether
detection is enabled on this zone

true or false

type String A string specifying whether this
zone is a polygon or a line

polygon or line

outline Array
of
objects

An array of point objects A point object array that has a minimum
of two points

7.3.10 Confidence Classification

The class name (e.g. person) and confidence provided by a classification algorithm (i.e. the deep
learning filter). The available class names are defined by the classification algorithm. The confidence
value indicates now likely that classification is to be correct. Confidence classification metadata will be
added to the meta array of a tracked object when available.

Class string Description

person A person, or tracked object with a person present (e.g bicycle)
vehicle A Car, Van, Bus or Truck
background Any object which is not included in the previous classes

Example:

{
"class": "person",
"confidence": 0.875215470790863,
"object_id": 22,
"typename": "vca.meta.data.classification.Confidence"

61

rest-api.md#colour-object
rest-api.md#colour-object
rest-api.md#point-object
rest-api.md#point-object

}

Property Type Description Possible values

class String Classification name One of a set list of names as defined by
the classification algorithm

confidenceFloat The model’s confidence that the
object class is correct

0 - 1

object_idNumber The id of this tracked object An unsigned integer

7.3.11 Colour Signature

The break down of pixel colours found in a given tracked object’s bounding box. The number of colours
a pixel can be grouped into is fixed, however the number of colours retuned in the colour signature
metadata object may change. Colour signature metadata will be added to the meta array of a tracked
object when available.

Example:

{
"typename": "vca.meta.data.ColourSignature",
"colours": [

{
"colour_name": "Black",
"colour_value": {

"r": 0,
"g": 0,
"b": 0

},
"proportion": 0.95555555820465088

},
{

"colour_name": "Brown",
"colour_value": {

"r": 150,
"g": 75,
"b": 0

},
"proportion": 0

},
{

"colour_name": "Grey",
"colour_value": {

"r": 100,
"g": 100,
"b": 100

},
"proportion": 0.029468599706888199

62

},
{

"colour_name": "Blue",
"colour_value": {

"r": 0,
"g": 0,
"b": 200

},
"proportion": 0

},
{

"colour_name": "Green",
"colour_value": {

"r": 0,
"g": 150,
"b": 0

},
"proportion": 0

},
{

"colour_name": "Cyan",
"colour_value": {

"r": 0,
"g": 255,
"b": 255

},
"proportion": 0

},
{

"colour_name": "Red",
"colour_value": {

"r": 255,
"g": 0,
"b": 0

},
"proportion": 0

},
{

"colour_name": "Magenta",
"colour_value": {

"r": 200,
"g": 0,
"b": 200

},
"proportion": 0

},
{

"colour_name": "Yellow",

63

"colour_value": {
"r": 255,
"g": 255,
"b": 0

},
"proportion": 0

},
{

"colour_name": "White",
"colour_value": {

"r": 255,
"g": 255,
"b": 255

},
"proportion": 0.014975845813751221

}
]

}

PropertyType Description Possible values

coloursArray An array of colour names, their RGB values and the
proportion of all pixels that have been grouped into this
colour category for this object

A fixed array of
colour metadata
objects

7.3.12 Body Part

Describes a body part (skeletal joint) position and the detection confidence of the algorithm.

Example:

{
"position": {

"x": 43386,
"y": 3561

},
"confidence": 0.8080910444259644,
"typename": "vca.meta.data.pose.BodyPart"

}

Property Type Description Possible values

position Object Position in x and y of the detected
body part

single point in terms of x and
y

confidence Number Detection and classification
confidence of the detection algorithm

0 - 1

64

7.3.13 Deep Learning People Tracker Skeleton Data

Amap of detected body parts (skeleton joints). The map property will return all body parts detected for
the attached object. Current implementation provides 18 possible body part types. In any given map
there could be less than 18. The list of detectable body parts is subject to change.

Below is a list of possible body part body parts:

Body Part key string

nose
left_eye
right_eye
left_ear
right_ear
neck
left_shoulder
right_shoulder
left_elbow
right_elbow
left_hand
right_hand
left_hip
right_hip
left_knee
right_knee
left_ankle
right_ankle

Example:

{
"map": [

{
"key": "nose",
"value": {

"position": {
"x": 43386,
"y": 3561

},
"score": 0.8080910444259644,
"typename": "vca.meta.data.pose.BodyPart"

}
},
{

"key": "neck",
"value": {

"position": {
"x": 43690,

65

"y": 5698
},
"score": 0.7894839644432068,
"typename": "vca.meta.data.pose.BodyPart"

}
},
{

"key": "right_shoulder",
"value": {

"position": {
"x": 41262,
"y": 4986

},
"score": 0.7354756593704224,
"typename": "vca.meta.data.pose.BodyPart"

}
},
{

"key": "right_elbow",
"value": {

"position": {
"x": 39745,
"y": 12109

},
"score": 0.7663553953170776,
"typename": "vca.meta.data.pose.BodyPart"

}
},
{

"key": "right_wrist",
"value": {

"position": {
"x": 38228,
"y": 18520

},
"score": 0.8059698939323425,
"typename": "vca.meta.data.pose.BodyPart"

}
},
{

"key": "left_shoulder",
"value": {

"position": {
"x": 46724,
"y": 6054

},
"score": 0.7997663617134094,
"typename": "vca.meta.data.pose.BodyPart"

66

}
},
{

"key": "left_elbow",
"value": {

"position": {
"x": 48241,
"y": 12822

},
"score": 0.7496799826622009,
"typename": "vca.meta.data.pose.BodyPart"

}
},
{

"key": "left_wrist",
"value": {

"position": {
"x": 48241,
"y": 18520

},
"score": 0.7150058746337891,
"typename": "vca.meta.data.pose.BodyPart"

}
},
{

"key": "right_hip",
"value": {

"position": {
"x": 41262,
"y": 18164

},
"score": 0.6697762608528137,
"typename": "vca.meta.data.pose.BodyPart"

}
},
{

"key": "right_knee",
"value": {

"position": {
"x": 41262,
"y": 26000

},
"score": 0.7108161449432373,
"typename": "vca.meta.data.pose.BodyPart"

}
},
{

"key": "right_ankle",

67

"value": {
"position": {

"x": 40049,
"y": 32767

},
"score": 0.5868609547615051,
"typename": "vca.meta.data.pose.BodyPart"

}
},
{

"key": "left_hip",
"value": {

"position": {
"x": 45207,
"y": 18520

},
"score": 0.689977765083313,
"typename": "vca.meta.data.pose.BodyPart"

}
},
{

"key": "left_knee",
"value": {

"position": {
"x": 44600,
"y": 25644

},
"score": 0.7125816345214844,
"typename": "vca.meta.data.pose.BodyPart"

}
},
{

"key": "left_ankle",
"value": {

"position": {
"x": 42476,
"y": 31698

},
"score": 0.6361902952194214,
"typename": "vca.meta.data.pose.BodyPart"

}
},
{

"key": "right_eye",
"value": {

"position": {
"x": 42779,
"y": 2849

68

},
"score": 0.7985154986381531,
"typename": "vca.meta.data.pose.BodyPart"

}
},
{

"key": "left_eye",
"value": {

"position": {
"x": 43993,
"y": 2849

},
"score": 0.8068280220031738,
"typename": "vca.meta.data.pose.BodyPart"

}
},
{

"key": "right_ear",
"value": {

"position": {
"x": 42172,
"y": 2493

},
"score": 0.33054694533348083,
"typename": "vca.meta.data.pose.BodyPart"

}
},
{

"key": "left_ear",
"value": {

"position": {
"x": 44903,
"y": 2849

},
"score": 0.6982870697975159,
"typename": "vca.meta.data.pose.BodyPart"

}
}

],
"score": 1.5487611293792725,
"typename": "vca.meta.data.Pose"

}

Property Type Description Possible values

map Array An array of body parts keyed against a
fixed list of body part types

An array of body part
metadata objects

confidence Number Mean confidence value from all body
part objects in map

0 - 1

69

7.3.14 Object History

An object containing the tracking history of a tracked object in the form of the ground points keyed by
timestamp.

Example:

{
"map": [

{
"key": "1970-01-01T01:00:00.000500000+01:00",
"value": {

"typename": "vca.meta.data.object.GroundPoint",
"value": {

"x": 17900,
"y": 33646

}
}

},
{

"key": "1970-01-01T01:00:01.000000000+01:00",
"value": {

"typename": "vca.meta.data.object.GroundPoint",
"value": {

"x": 17506,
"y": 33658

}
}

}
],
"object_id": 147,
"typename": "vca.meta.data.object.History"

},

Property Type Description Possible values

map Array An array of tracked objects An array of valid tracked objects
object_id Number The id of this tracked object An unsigned integer

Please note the object_id will match the id value of the host "vca.meta.data.Object".

7.3.15 Event

An object representing a metadata event

{
"typename":"vca.meta.data.Event",
"id":12841,
"name":"Deep Learning Presence 24",

70

"type":"Presence",
"category":"analytics",
"start":"2020-09-08T16:52:31.677858944+01:00",
"end":"2020-09-08T16:52:34.011858944+01:00",
"duplicate":true,
"objects":[

{
"typename":"vca.meta.data.Channel",
"id":2

},
{

"typename":"vca.meta.data.Zone",
"id":4,
"name":"Car Park",
"channel":2,
"colour":{

"r":114,
"g":159,
"b":207,
"a":255

},
"detection":"on",
"type":"polygon",
"outline":[

{
"x":0,
"y":26634

},
{

"x":34476,
"y":26634

},
{

"x":34476,
"y":23035

},
{

"x":0,
"y":23035

}
]

},
{

"id": 105,
"width": 728,
"height": 3268,
"meta": [

{

71

"typename": "vca.meta.data.object.GroundPoint",
"value": {

"x": 44229,
"y": 24298

}
}

],
"outline": [

{
"x": 43865,
"y": 21030

},
{

"x": 44593,
"y": 21030

},
{

"x": 43865,
"y": 24298

},
{

"x": 44593,
"y": 24298

}
],
"typename": "vca.meta.data.Object"

}
]

}

Property Type Description Possible values

id Number The id of this event An unsigned integer
name String The name of the rule that

triggered this event
Any string (can be empty)

type String The type of this event A valid event type. See below for a list of
types

category String The category of this event A valid event category. See below for a
list of categories

start String The start timestamp of this
event

A valid ISO8601 timestamp

end String The end timestamp of this event A valid ISO8601 timestamp
duplicate Boolean Indicates a persistent event has

fired before
true/false

objects Array The tracked objects associated
with this event

A valid array of tracked objects

Below is a list of possible event categories:

72

Event category string Description

analytics An event generated by the VCA5 Analytics engine
loss-of-signal An event indicating the loss of video signal from a camera

Below is a list of possible event types:

Event type string Description

presence A presence event
enter An enter event
exit An exit event
appear An appear event
abandoned An abandoned event
disappear A disappear event
stopped A stopped event
dwell A dwell event
direction A ‘direction’ event
speed A speed event
tailgating A tailgating event
linecountera A line counter crossing event (left direction)
linecounterb A line counter crossing event (right direction)

73

Chapter 8

ONVIF

VCAcore supports a number of ONVIF features. Note that the same ONVIF features are present in
VCAserver and VCAbridge.

Device Endpoints:

Endpoint Description

GetServices Get the list of supported services
GetServiceCapabilities Get the capabilities for all supported services
GetDeviceInformation Get basic information such as manufacturer and version

number
GetScopes Get the list of scopes the application supports
GetUsers Get the list of users. Returns ‘admin’ which is the only permitted

user
SetUser Set the password of a specific user. Please note the limitation

above
GetCapabilities Get the capabilities of the application

It is important to note that even though the GetUsers and SetUser endpoints are supported, neither
user addition (CreateUsers) nor deletion (DeleteUsers) are supported.

Event endpoints:

Endpoint Description

GetEventProperties Get the properties of all events
CreatePullPointSubscription Create a subscription for pulling events. Returns a

subscription reference
PullMessages Pull the list of events, providing a subscription reference
Unsubscribe Unsubscribe a specific subscription reference

Please note that the PullMessages endpoint returns a list of the most recent events generated by
the application. The following fields are currently included for each event.

74

Property Description

start_time The start time of the event
end_time The end time of the event
id The id of the event
name The user-specified name of the event
type The type of the event
category The category of the event

Note: * The start_time and end_time properties of the events are specified as nanoseconds since
the Unix epoch. * The remaining properties are identical to the ones specified for events in the Meta-
data API section.

Please refer to the ONVIF documentation for more information.

75

http://www.onvif.org

	Introduction
	REST API Introduction
	Configuration Tree
	Interacting with the Configuration
	Adding Objects to the Configuration Tree
	Modifying Properties in the Configuration Tree
	Getting Properties in the Configuration Tree
	Error Handling
	HTTP Request Headers

	Custom Objects
	Point Object
	Colour Object

	Licenses
	Adding a License
	Retrieving the Hardware GUID

	REST API Channels
	Elements
	Adding an RTSP Element
	Adding a File Element

	Channels
	Adding a Channel
	Channel Snapshots

	REST API Observables and Other Sources
	Overview
	General Concepts

	Basic Rules
	Abandoned Observable
	Appear Observable
	Direction Observable
	Disappear Observable
	Deep Learning Presence Observable
	Dwell Observable
	Enter Observable
	Exit Observable
	Line Counter Observable
	Loss of Signal Observable
	Presence Observable
	Stopped Observable
	Tailgating Observable

	Filters
	Speed Filter Observable
	Object Filter Observable
	Colour Filter Observable
	Deep Learning Filter Observable
	Source Filter Observable

	Conditional Rules
	And Observable
	Continuously Observable
	Counter Observable
	Or Observable
	Previous Observable

	Other Sources
	Armed
	Disarmed
	HTTP
	Interval
	Schedule
	System

	REST API Zones, Actions and VCAcore Status
	Zones
	Adding a Zone

	Actions
	General Concepts
	TCP Action
	HTTP Action
	Email Action
	Arm Action
	Disarm Action

	Status
	User Credentials
	Armed State

	Metadata APIs
	Server-Sent Events (SSE) Endpoints
	Channel
	System Statistics
	Uptime
	SSE Code Sample

	RTSP Metadata Stream
	RTSP Metadata Stream Code Sample

	Metadata Format
	SSE Metadata Format
	RTSP Metadata Stream Format
	Metadata Objects
	Counter Value
	Counting Line
	Scene Learning
	Tamper
	Tracked Objects
	Ground Point
	Channel
	Observable
	Zone
	Confidence Classification
	Colour Signature
	Body Part
	Deep Learning People Tracker Skeleton Data
	Object History
	Event

	ONVIF

